Lecture 22:
Turing Machines

Part 3 of 3

Outline for Today

* Recap from Last Time
 Where are we, again?
* Why Languages and Strings?

 We’ve been using languages to model problems.
Why?

e Universal Machines

» A single computer that can compute anything
computable anywhere.

* Self-Referential Software

 Programs that compute on themselves.

Recap from Last Time

The Church-Turing Thesis claims that

every feasible method of computation
is either equivalent to or weaker than
a Turing machine.

“This is not a theorem - it is a
falsifiable scientific hypothesis.
And it has been thoroughly

tested!”
- Ryan Williams

Regular
Languages

Problems
Solvable by
Any Feasible
Computing
Machine

All Languages

Problems
Regular Solvable by
Languages Turing

Machines

All Languages

Very Important Terminology

Let M be a Turing machine.
M accepts a string w if it returns true on w.
M rejects a string w if it returns false on w.

M loops infinitely (or just loops) on a string w if when run on w
it neither returns true nor returns false.

M does not accept w if it either rejects w or loops on w.
M does not reject w w if it either accepts w or loops on w.

M halts on w if it accepts w or rejects w.

does not reject) Accept ‘x

Loop halts

does not accept - - “

Recognizers and Recognizability

« ATM M is called a recognizer for a language L over X if the
following statement is true:

Vw € 2*, (we L o M accepts w)

A language is recognizable when there is a recognizer for it.

Which of these statements are true for all choices of
TM M, string w, and language L7

(1) If M recognizes L and M rejects w, then w ¢ L.

(2) If M recognizes L and w € L, then M rejects w.

(3) If M loopson wand w € L, then M does not recognize L.
(4) If M loops on wand w € L, then L is not recognizable.

Answer at https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev

Deciders and Decidability

« ATM M is called a decider for a language L over X if the
following statements are true:

Vw € 2*, M halts on w.
Vw € 2*, (we L o M accepts w)

A language is decidable when there is a decider for it.

Which of these statements are true for all choices of
TM M, string w, and language L7

(1) If M decides L and M rejects w, then w € L.

(2) If M decides L and w ¢ L, then M rejects w.

(3) If M loops on wand w € L, then M does not decide L.
(4) If M loops on wand w € L, then L is not decidable.

Answer at https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev

R and RE Languages

 The class R consists of all decidable
languages.

 The class RE consists of all recognizable
languages.

* By definition, we know R C RE.
 Key Question: Does R = RE?

New Stuff!

Strings, Languages, and Encodings

What problems can we solve with a computer?

/

What is a
‘oroblem?”

Decision Problems

A decision problem is a problem with a
yEes-0r-no answer.

 For example:

 “Given integers x, y,and z,is x + y=2?"1is a
decision problem.

* “Given integers x and y, what is x + y?” is not
a decision problem.

 DFAs, NFAs, and TMs solve decision
problems: they get an input and produce a
yes/no output.

A Model tor Solving Problems

(accept)

« D
Iinput

- Turing Machine
< v

(reject)

bool containsCat(Ricture P) {

/] .. do somethlngxi\\“ How doss Thic
) match our model?

Humbling Thought:
Everything on your computer is a
string over {0, 1}.

Strings and Objects

 Think about how
my computer
encodes the image
on the right.

* Internally, it's just
a series of zeros
and ones sitting on
my hard drive.

Strings and Objects

« A different sequence
of 0s and 1s gives rise
to the image on the
right.

 Every image can be
encoded as a
sequence of 0s and 1s,
though not all
sequences of 0s and 1s
correspond to images.

Object Encodings

» If Obj is some mathematical object that is discrete and
finite, then we’ll use the notation (Obj) to refer to some
way of encoding that object as a string.

 Think of (Obj) like a file on disk - it encodes some high-
level object as a series of characters.

= 110111001011..110

Object Encodings

For the purposes of what we’re going to be doing,
we aren’t going to worry about exactly how objects
are encoded.

For example, we can say (137) to mean “some
encoding of 137” without worrying about how it’s
encoded.

« Analogy: do you need to know how numbers are
represented in Python to be a Python programmer?
That’s more of a CS107 question.

We’ll assume, whenever we’'re dealing with
encodings, that some Smart, Attractive, Witty
person has figured out an encoding system for us
and that we’re using that encoding system.

Object Encodings

* Object encodings let us define languages
like these:

« {(n) | ne€ Nandniseven }

 { (n) | n € N and the Hailstone sequence
terminates for n }

* { (G) | G is a graph and G is bipartite }

 We can focus more on what property of an
object we’'re checking for rather than how
the object is represented as a string.

A Model tor Solving Problems

- N
input . .
- Turing Machine
(possibly
encoded) " WV

(accept)

(reject)

bool matchesRegex(EFring W, RegexE) {

// .. do something .. ﬁ}{\‘_. How doss s
} mafch our model?

Encoding Groups of Objects

* Given a group of objects Obji, Objz, ..., Objn,
we can create a single string encoding all
these objects.

 Intuition 1: Think of it like a .zip file, but
without the compression.

 Intuition 2: Think of it like a tuple or struct.

 We'll denote the encoding of all of these
objects as a single string by (Obj, ..., Objn).

Encoding Groups of Objects

 We can now talk about languages like
these:

« { (R, w) | Ris aregex and R matches w }

» { (G, s, t) | Gis a graph, s and t are nodes
in G, and there’s a path from s
tot }

* Our languages are starting to look a lot
more like problems in the traditional sense
than sets of strings.

A Model tor Solving Problems

/
Iinput

>

(possibly

Turing Machine

-

/

multiple
distinct
values)

(accept)

(reject)

bool matchesRegex(gEring W, Regex}R) {

/] .. do something .. L

}

These torm one
large bitstring.,

What problems can we solve with a computer?

Time-Out for Announcements!

Second Midterm Graded

 The second midterm has been graded.

 Graded are available on Gradescope.

« Solutions, statistics, and common errors are posted
on the course website.

e Want to chat with a member of the course staff
one-on-one about the exam and what to do
moving forward? Please reach out to Kaia!

 Regrade requests for the second midterm open
Tuesday at 6 PM and close Monday the 24™" at
6 PM Pacific. See announcement on Ed for
regrade request requirements.

Second Midterm Graded

80t Percentile: 33 / 40 (83%)
60t Percentile: 30 / 40 (75%)

40" Percentile: 26 / 40 (65%)
20" Percentile: 21 / 40 (53%)

0-5 6-10 11-15 16-20 21-25 26-30 31-35 36-40

Problem Set Logistics

PS’/ solutions are now available on the course
website.

« We’ll aim to finish grading by Sunday.
PS8 comes due this Sunday at 1:00PM.

« Please take a late day if needed. No need to save up
late days if you have multiple remaining.

PS9 will go out Friday, as usual, and come due
the Friday after break. That will be our final pset.

Have questions? Come talk to us in office hours,
or post online on Ed!

Back to CS103!

Emergent Properties

Emergent Properties

 An emergent property of a system is a property
that arises out of smaller pieces that doesn't
seem to exist in any of the individual pieces.

 Examples:

* Individual neurons work by firing in response to
particular combinations of inputs. Somehow, this
leads to consciousness, love, and ennui.

* Individual atoms obey the laws of quantum mechanics
and just interact with other atoms. Somehow, it's
possible to combine them together to make iPhones
and pumpkin pie.

 If this definition seems fuzzy, it’s because it is.

Emergent Properties

« Computational devices (TMs and other equivalent devices)
have two surprising emergent properties:

* Universality: There is a single computing device capable of
performing any computation.

* Self-Reference: Computing devices can ask questions about
their own behavior.

 These properties are, in a sense, inherent to all computing
devices. Computing can’t exist without them.

 These properties are interesting in their own rights - and
are the theoretical basis for much of modern computing.

» They also are an “Achilles’ heel” of computational devices,
and we’ll use them to find concrete examples of problems
computers can’t solve.

Universal Machines

An Observation

« Think about how you interact with your physical
computer.

* You have a single, physical computer.
« That computer then runs multiple programs.

* Contrast that with how we’ve worked with TMs.

« We have a TM for { ab" | n € N }. That TM will always
perform that calculation and never do anything else.

« We have a TM for the hailstone sequence. That TM can’t
compose poetry, write music, etc.

* How do we reconcile this difference?

Can we make a “reprogrammable
Turing machine?”

A TM Simulator

It is possible to program a TM simulator on an unbounded-
memory computer.

* You've seen this in class, and you’ll use one on PS8.
« We could imagine it as a method
bool simulateTM(TM M, string w)
with the following behavior:

o If M accepts w, then simulateTM(M, w) returns true.
« If M rejects w, then simulateTM(M, w) returns false.
o If M loops on w, then simulateTM(M, w) loops infinitely.

Auk: h /// \\\

Move Left
M Write 'k'

Goto Moa
- > >

w | ...input... y \\\ simulateTM ///

A TM Simulator

 Anything that can be done with an
unbounded-memory computer can be done
with a TM.

e So there must be some TM that has the
behavior of simulateTM.

« What would that TM do?

Auk: N /?;rn: \\\

Move Left If Blank Goto Heron
M Write 'k' Write 'q’

Goto Moa : | Move Right

w | ...input... Universal TM

/ - /

The Universal Turing Machine

« Theorem (Turing, 1936): There is a Turing machine Uy called the
universal Turing machine that, when run on an input of the form
(M, w), where M is a Turing machine and w is a string, simulates M
running on w and does whatever M does on w (accepts, rejects, or loops).

« The observable behavior of Uy is the following:

« If M accepts w, then Uy accepts (M, w). UTM does to (M, w)
e If M rejects w, then Uy, rejects (M, w).

what

e If M loops on w, then Uy loops on (M, w).
™ M does to w.

Auk:) /?;rn: \\\

Move Left If Blank Goto Heron
M Write 'k' Write 'q’

Goto Moa : | Move Right

w | ...input... Universal TM/

/ -

The Universal Turing Machine

 Intuition: Modern computers - laptops,
phones, network routers, etc. - are universal
Turing machines.

« Each computer is a single piece of hardware. With
rare exceptions, we don’t make specific changes to
the hardware after we purchase the computer.

 We load programs into those computers, and those
computers then execute the commands in those
programs.

 Turing came up with this idea in 1936 - before
any programmable computers had been built!

The Universal Turing Machine

» Building out Ut is nontrivial, but the conceptual idea behind it
isn’t too bad.

* Essentially:

» Urm splits its tape into two regions: one spot holding the source code
of the TM to simulate, and one holding the tape contents for that TM.

 Urm somehow marks where in the simulated TM'’s tape the simulated
TM'’s tape head is, perhaps by having a special symbol indicating
“tape head here.”

 Urm repeatedly consults the source code of the simulated TM to
determine what action to take, then simulates that action.

 If the simulated TM accepts or rejects, then Urv also accepts or
rejects.

~.| |a/b/®»|bla| |.

. W r it e X

The Universal Turing Machine

- Amazing Thought: U~y is the most powertul
computational device that can be built.

* Assuming the Church-Turing thesis, any
computation that can be performed by any
computing system can be performed by a TM.

 The universal TM can “run” any TM, so it can
perform any computation any TM can perform.

 So Urv can do any computation that could ever be
done by any possible feasible computing system.
(Wow!)

* And yet - it’s just a simulator! All it does is simulate
one step of a TM after another.

Urm as a Recognizer

e U, when run on a string (M, w), where M is a
TM and w is a string, will
accept (M, w) if M accepts w,
reject (M, w) if M rejects w, and
loop on (M, w) if M loops on w.

« Although we didn’t design Urv as a recognizer, it
does recognize some language.

 Which language is that?

Urm as a Recognizer

e U, when run on a string (M, w), where M is a
TM and w is a string, will

accept (M, w) if M accepts w,
reject (M, w) if M rejects w, and
loop on (M, w) if M loops on w.

* Let’s let Arm be the language recognized by the
universal TM Uru. This means that

VM.Vw € 2* (M accepts w < (M, w) € Am)
« So we have
Amm={ (M, w) | Mis a TM and M accepts w }

The Language A,

Arvm ={ (M, w) | MisaTM and M accepts w }
* Here’s a complicated expression. Can you
simplify it?
(Upp (N, X)) € A,

« Given the definition of Atv and Uy, the following
statements are all equivalent to one another.

« M accepts w.
 Urm accepts (M, w).
* (Ml W) S ATM-

Answer at
hittps://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev

Regular
Languages

All Languages

Uh... so what?

Reason 1: It has practical consequences.

Why Does This Matter?

» The existence of a universal Turing machine has both
theoretical and practical significance.

« For a practical example, let's review this diagram from
before.

» Previously we replaced the computer with a TM. (This
gave us the universal TM.)

« What happens if we replace the TM with a computer
program?

for (int 1 = 2; A / \
1< n; i++) {
code if (n% 1 ==0)
.

w | ...input... simulateProgram
/ k /

Why Does This Matter?

« We now have a computer program that runs other computer
programs!

 An interpreter is a program that simulates other programs. Python
programs are usually executed by interpreters. Your web browser
interprets JavaScript code when it visits websites.

« A virtual machine is a program that simulates an entire operating
system. Virtual machines are used in computer security, cloud
computing, and even by individual end users.

 It’s not a coincidence that this is possible - Turing’s 1936 paper

says that any general-purpose computing system must be able to
do this!
\

\
for (int 1 = 2; /

1 < n; i++) {
code if (n % 1 == 0)

} >

w | ...input... simulateProgram
/ \ /

Reason 2: It’s philosophically interesting.

Can Computers Think?

 On May 15, 1951, Alan Turing delivered
on the
topic of whether computers can think.

 He had the following to say about
whether a computer can be thought of as
an electric brain...

https://turingarchive.kings.cam.ac.uk/publications-lectures-and-talks-amtb/amt-b-5

“In fact I think [computers] could be used in such a manner that they could be
appropriately described as brains. I should also say that

‘If any machine can be appropriately described as a brain,
then any digital computer can be so described.’

This last statement needs some explanation. It may appear rather startling,
but with some reservations it appears to be an inescapable fact.

It can be shown to follow from a characteristic property of digital computers,
which I will call their universality. A digital computer is a universal machine
in the sense that it can be made to replace any machine of a certain very wide
class. It will not replace a bulldozer or a steam-engine or a telescope, but it
will replace any rival design of calculating machine, that is to say any machine
into which one can feed data and which will later print out results. In order to
arrange for our computer to imitate a given machine it is only necessary to
programme the the computer to calculate what the machine in question would
do under given circumstances, and in particular what answers it would print
out. The computer can then be made to print out the same answers.

If now some machine can be described as a brain we have only to programme
our digital computer to imitate it and it will also be a brain.”

Self-Referential Software

Quines

* A Quine is a program that, when run,
prints its own source code.

* Quines aren't allowed to just read the file
containing their source code and print it
out; that's cheating (and technically
incorrect if someone changes that file!)

 How would you write such a program?

Writing a Quine

Self-Retferential Programs

« The fact that we can write Quines is not a
coincidence.

Theorem: It is possible to construct
TMs that pertform arbitrary computations
on their own source code.

* In other words, any computing system
that’s equal to a Turing machine possesses
some mechanism for self-reference!

 Want to see how deep the rabbit hole goes?
Take CS154!

Self-Retferential Programs

* Claim: Going forward, assume that any function has
the ability to get access to its own source code.

* This means we can write programs like the ones
shown here:

bool narcissist(string input) {
string me = /* source code of narcissist */;

return input == me;

}

bool acceptlLongerStrings(string input) {
string me = /* source code of acceptlLongerStrings */;

return input.length() > me.length();

Next Time

* Self-Defeating Objects
* Objects “too powertful” to exist.

e Undecidable Problems

* Problems truly beyond the limits of
algorithmic problem-solving!

 Consequences of Undecidability

 Why does any of this matter outside of
Theoryland?

